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Stability of towed, totally submerged flexible cylinders 

By M. P.  PAIDOUSSIS 
Department of Mechanical Engineering, McGill University, Montreal 

(Received 5 February 1968) 

A general theory is presented to account €or the small, free, lateral motions of a 
flexible, slender, cylindrical body with tapered ends, totally submerged in liquid 
and towed at  steady speed U.  For particular shapes of the ends and length of 
tow-rope, it is shown that the body may be subject to oscillatory and non- 
oscillatory instabilities for U > 0; at small U ,  these instabilities correspond to 
those of a rigid body. At higher U ,  the system generally regains stability in the 
above'modes, but may be subject to higher-mode, flexural oscillatory instabilities. 
The,,critical conditions of stability are calculated extensively and the effect on 
stability of a number of dimensionless parameters is discussed. It is shown that 
optimum stability is achieved with a streamlined nose, a blunt tail and a short 
tow-rope. 

Some experiments are described which were designed to test the theory. 
Rubber cylinders of neutral buoyancy were held in vertical water flow by a 
nylon 'tow-rope'. Provided the tail was streamlined and the tow-rope not too 
short, ' criss-crossing ', non-flexural oscillations developed at very low flow. 
Increasing the flow, these oscillations ceased and the cylinder buckled like a 
column; subsequently higher-mode flexural oscillations developed. However, 
for a sufficiently blunt tail and short tow-rope, the system was completely stable. 

The experimental observations are generally in qualitative agreement with 
theory. Quantitative comparison of the various instability thresholds and stable 
zones between experiment and theory, based on estimated values of some of the 
theoretical dimensionless parameters, is also fairly good. 

1. Introduction 
This study deals with the dynamics of submerged flexible slender cylinders 

held in axial flow by a string attached to the upstream end; the system thus 
simulates a flexible cylinder towed underwater. 

This work is an extension of a previous study of the dynamics of flexible cylin- 
ders in axial flow (Paidoussis 1966a, b) ,  in which the upstream end of the cylinder, 
or both ends, were supported. In  this previous study it was found that for 
sufficiently large flow velocities the cylinder may be subject to buckling and 
oscillatory instabilities in its first and higher flexural modes, respectively. The 
buckling instability is similar to the buckling of a column under static loading; 
the oscillatory instabilities are self-excited oscillations similar to flutter. It was 
considered likely that the system under consideration here, namely that of a 
towed cylinder, may be subject to similar instabilities. 

18 Fluid Mech. 34 
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This problem was first examined by Hawthorne (1961) in connexion with the 
observed ‘snaking ’ of towed Dracones, which are flexible, sausage-like towed 
barges, used for the transport of fluid cargo. In  his analysis, Hawthorne dealt 
exclusively with the buckling mode of instability; he found that the critical 
towing speeds for buckling agreed fairly closely with the observed speeds for the 
onset of snaking. The analysis presented here is considerably more general. 

The problem at hand is of course related to that of stability of towed ships, and 
that of yawing of airships moored to a mast. Wherever possible, the results 
obtained will be compared to those from the above related theories. 

2. General theory 
Equation of small motions 

The system under study consists of a flexible slender cylindrical body of circular 
cross-section immersed in an incompressible fluid of density p flowing with uni- 
form velocity U parallel to the x-axis, which coincides with the position of 

X 

FIGURE 1. Diagram of a towed slender flexible cylinder. 

rest of the cylinder and of the tow-rope. At its extremities the cylinder is ter- 
minated by ogival or hemispherical ends (figure 1) which are short in com- 
parison with the over-all length of the body, L. Apart from these end-sections, 
the cylinder is of uniform cross-sectional area S, mass per unit length m and 
flexural rigidity EI.  The tow-rope is considered to be inextensible and of negli- 
gible rigidity and mass. 

The specific gravity of the cylinder is supposed to be equal to that of the flowing 
fluid. The 2- and y-axes lie in a horizontal plane wherein all motions of the 
cylinder are supposed to be confined, so that gravity and buoyancy do not come 
into play. (The question of applicability of this theory to the general case of a 
towed cylinder equally free to move in any plane is discussed in 3 7 . )  

The equation of small lateral motions for such a cylindrical body about its 
position of rest was derived previously (Paidoussis 1966 a )  and, consequently, a 
complete derivation will not be given here. 

Consider an element 6x of the cylinder (figure 2) which was subjected to a small 
lateral motion y(x, t ) .  We denote the axial tension by T, the lateral force per unit 
length due to acceleration of the fluid around the cylinder by FA, and the viscous 
forces per unit length in the normal and longitudinal directions by F ,  and F’, 
respectively. A force balance in the lateral direction yields 

a2Y 
at2 

+FN+m- = 0 ,  
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where the first term was obtained, by elementary beam theory, by relating the 
lateral shear force Q to the bending moment A. 

t 

FIGURE 2. Forces and moments acting on an element Sx of the cylinder. 

The force FA 6x represents the reaction on the cylinder of the force required to 
accelerate the fluid around it, and may be written as 

FASX = [(a/at) + U(a/ax)] ( M w ) ~ z  

(Lighthill 1960). The relative velocity w(x, t )  between the cylinder and the fluid 
flowing past it, resulting from motion of the cylinder, is given by 

U ( X ,  0 = [ ( a /w  + u(a/ax)lY; 

M is the virtual mass of the fluid per unit length (equal to pS for a, circular cylin- 
der). Hence we may write 2 

F, = M (i + u:) 9 (2) 

over the cylindrical portion of the body, where M = pS is constant. (The forces 
acting on the tapered portions of the body will be treated with the boundary 
conditions.) 

The viscous forces acting on long inclined cylinders have been discussed by 
Taylor (1952). For turbulent boundary layers Taylor noted that viscous forces 
will depend on the exact nature of surface roughness. Where it may be assumed 
that roughness consists of a number of projections pointing equally in all direc- 
tions, he proposed that 

FN = ~pDU2(CD,sin2i+C,sini) and FL = +pDU2Ctcosi, 

where i is the angle of incidence, D is the cylinder diameter, and CDp and C, are 
the coefficients associated with form and friction drag for a cylinder in cross flow. 

For the motions considered here sini < 1 and, as only linear terms will be 
18-2 
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consideredin the analysis, it is assumed that the viscous forces may be represented 
adequately by 

e,, = + ( M / D )  U2c,sini and FL = + ( M / D )  U2cT, 

in which p was eliminated by the use of iW = $nD2p; cN and c p  are considered to 
be not necessarily equal. The angle i may be related to the normal and axial 
components of flow by i = sin-l ( v /U) ,  which substituted in the above equation 
along with the expression for v given above yields 

For small lateral motions, inertial forces in the axial direction may beneglected; 
accordingly, an axial force balance on the element 6x yields aT/az+FL = 0. 
Substituting from (3)) integration from x to x = L yields 

T ( x )  = T(L)  + &JIU2(L-z ) /D .  

A non-zero value of T(L)  can only arise from form drag at  the free end, which 
may be considered proportional to +pU2S. Accordingly, we write 

T ( x )  = ~ c p M U 2 ( L - ~ ) / D + ~ c 2 M U i 2 ,  ( 4 )  

where c2 is the coefficient of form drag at  the tail. 

lateral motions 
Substituting now (2)) (3) and (4) into ( l ) ,  we obtain the equation of small 

If distributed longitudinal drag is neglected (cp = 0)) this equation reduces to 
essentially that derived by Hawthorne (1961). 

Boundary conditions 

A t  either end, it is assumed that the cross-sectional area tapers smoothly from S 
to zero in a distance sufficiently short, so that y and the lateral velocity v may be 
considered constant. This requirement allows the forces acting at the tapered 
ends to be lumped and considexed in appropriate boundary conditions (Haw- 
thorne 1961 ; Paidoussis 1966a). Equating the lateral shear and inertial forces 
to the rate of change of lateral momentum over the tapered free end, say for 
L - l2 < x < L, we obtain 

where Q is the lateral shear force. The parameter f2, which is equal to unity for 
slender-body, inviscid flow theory, was introduced to account for the theoretical 
lateral force a t  the free end not being fully realized because of (a )  the lateral flow 
not being truly two-dimensional, since the fluid has opportunity to pass around 
rather than over the tapered end (Munk 1924), and ( b )  boundary-layer effects 
(Hawthorne 1961). Accordingly, f 2  will normally be less than unity. 
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At the upstream end, there is also a tow-rope force, equal to the tow-rope 
tension, P, times the sine of the angle that the tow-rope makes with the position 
of rest. For small motions this is linearized to - P ( y / s ) ,  where s is the tow-rope 
length. Accordingly, at  the upstream end we have 

s”%dx- f , s :  0 ax (:+ U g )  

where fi has the equivalent meaning for the nose tapered section that f 2  has for 
the tail. 

The tow-rope pull is equal to the tension in the cylinder at  x = 0, plus the form 
drag a t  the nose which we assume to be proportional to pU2S. Accordingly, we 
have P = & c T M U 2 L / D + ~ c 2 M U 2 + ~ c l , ~ U 2 ,  where c, is the coefficient of form 
drag a t  the nose. Substituting for P and integrating ( 6 )  and (7), making use of the 
fact that v and y are assumed constant for 0 < x < 1, and for L-1, < x < L 
(provided, of course, that I,/L < 1 and l,/L < I) ,  we obtain 

where S(x)dx and x L =  L l L  S(x)dx.  
8 L-Z? 

(9) 

The other two boundary conditions required were obtained by making the 
reasonable assumption that there are no bending moments on the cylinder at  
x = 0 and x = L, or 

These are similar to the boundary conditions derived by Hawthorne (1961). 

3. Analysis 
The problem is expressed in dimensionless terms by putting 

Substituting into (5) we obtain 
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Similarly, the boundary conditions are 

a27 = 3 + flu2 a7 - + $u2[(scr + c1 + c,)/R]q + f l @ h  a7 
aE 

It is noted that /3 may in principle vary from 0 to 1; the lower limit corresponds 
to a very light fluid and a very heavy cylinder, and the higher limit to the oppo- 
site case. However, the assumption of null buoyancy made earlier (0 2) necessi- 
tates that @ = Q. 

Let us now consider motions of the cylinder of the form 

7 = Y([)eiW7, (14) 

w being a dimensionless frequency defined by w = [(M+m)/EI]&C2L2, where C! 
is the circular frequency of motion which in general is complex. The system will 
be stable or unstable accordingly as the imaginary part of w is positive or 
negative. 

The system under consideration has an infinite number of degrees of freedom. 
The complete solution of the dynamical problem therefore involves the determin- 
ation of the infinite set of frequencies of the normal modes of oscillation of the 
system, as continuous functions of the dimensionless velocity u and the ‘system 

The method of analysis is to express Y(6) as a power series in 6 (cf. Paidoussis 
parameters’ p, € 7  cN,  cT? c1, c2, fi, f 2 ,  x1, x 2 *  

1966a), so that 1 

where the A,  are generally complex. Substituting into (12) and (13) we eventually 
obtain a 4 x 4  determinant which must vanish for non-trivial solution (cf. 
Paidoussis 1966a); this provides an implicit relation between w on the one hand, 
and u and the system parameters on the other. A sufficient number of terms in 
the power series must be used to approximate adequately the shape of the body 
in the course of its motions. It was found that up to 40 terms were necessary in 
order to determine w to three significant figures. 

4. The frequency as a function of flow velocity 
For any given physical system we suppose that the system parameters can be 

calculated or measured, and that they are independent of the flow velocity. 
Using typical values of these parameters, the complex frequencies of some of the 
lower modes of a number of systems are calculated, for increasing values of the 
dimensionless flow velocity u, starting with u = 0. The method of computation 
using a digital computer is essentially as described by Paidoussis (1966a). 

The complex frequencies of the lowest four modes of the system for some 
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typical cases, plotted as Argand diagrams, are shown in figures 3 to 6. We note 
that for u = 0 the cylinder is essentially a free-free beam as there is no tension 
on the tow-rope ; accordingly, the dimensionless frequencies of the so-called 

- 1  
Zeroth mode 

Re (4 
FIGURE 3. The dimensionless complex frequency of the zeroth and first modes of a system 

with ecN = ECT = 1, fi = 1, c1 = 0, fz = 0.8, cZ = 0.2, A = 1, = xz = 0.01. 

FIGURE 4. The dimensionless complex frequency of the second and third modes of a system 
with ecN = ECT = 1, fi = 1, c1 = 0, fz = 0.8, c2 = 0.2, A = 1, x1 = xz = 0.01. 
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second, third and higher modes, for u = 0, correspond t o  those of a free-free 
beam [cf. figures 4 and 6; minor differences between the free-free beam 
frequencies and those shown arise from departures from cylindrical geometry at  
the nose and tail of the cylinder]. The reason for calling these modes ‘second’, 
‘third’, etc. is mainly for their similarity in shape (for u = 0) to those of a pinned- 
free beam, t o  which this system is related. 

4.5 

4 

3.5 

1 

L 

t 
Zeroth model.\ = 1) 

- 1  

Re ( w )  = 0 

FIGURE 5. The dimensionless complex frequency of the zeroth and first modes of a system 
with ecN = ECT = 1, fl = 1, c1 = 0, fz = 0.4, cz = 0.6, A = 1, x1 = xZ = 0.01; also the 
first mode with A = 0.2. 

The ‘zeroth’ and ‘first’ modes (cf. figures 3 and 5 )  correspond to essentially 
rigid-body motions, at least for very low values of u. At u = 0, the frequency 
o = 0 corresponds to rigid-body rotation about the point where the tow-rope is 
attached to the towing vessel; for u > 0, however, evidently two modes emanate 
from this point, one oscillatory and the other non-oscillatory. The zeroth mode 
generally remains on the [Im(w)]-axis and the instability associated with this 
mode will be called ‘yawing’; this instability, according t o  linear theory, in- 
volves a divergent non-oscillatory deviation from the position of rest, with or 
without flexing. 

Figures 3 and 4 show the frequencies of the lowest four inodes of a cylinder 
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with a perfectly streamlined nose (fi = 1)  and an almost perfectly streamlined 
tail (f, = O a f + ) ,  such that the form drag at the nose may be considered to be 
essentially zero at the nose (cl = 0) and appreciable at  the tail (c, = 0.2); the 
tow-rope is as long as the cylinder (A = 1). At low flow the system is evidently 
unstable in the zeroth and first modes and, at higher flow velocities, in the second 

Y 

- 
s 
v 

Y 

A 4 35" 
1 
10 20 40 50 60 

Re (0) 

and third modes also. The locus of a mode on the [Im(w)]-axis always has two 
branches; in the case of the zeroth mode, one branch has Im(w) > 0 for all u, 
whereas the other leads to instability. The behaviour of this mode is clarified by 
the supplementary diagram at the far left of the figure. The fact that the zeroth 
and first modes are unstable for arbitrarily small u indicates that the system is 
unstable as a rigid body, since flow-induced forces will then be very small in 
comparison with the flexural restoring forces; thus this is similar to the in- 
stability of a balloon moored to a mast. The second and third modes behave 
essentially as if the upstream end of the cylinder were pinned or clamped (Pai- 
doussis 1966a). It is of particular interest that the system may be unstable in a t  
least one of its modes for all values of u (figures 3,4). 

A comparison of figures 3 and 5 shows the effect of a blunter tail (smaller f2 and 
higher c2)  on the behaviour of the zeroth and first modes of a particular system 
with fl = 1, c1 = 0, E C ~  = ec, = 1, x1 = x, = 0.01 and A = 1. We see that the 
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blunter tail renders the hystem stable in its zeroth mode for all u, both branches 
of this mode being on the positive [Im(w)]-axis (figure 5 ) .  Also, the locus of the 
first mode crosses to the stable region at  a smaller value of u. Thus blunting the 
tail has a stabilizing effect on the system in its zeroth and first modes. Similarly, 
from figures 4 and 6 we see that blunting the tail has a stabilizing effect also on 
the second and third modes of the system. 

Also shown in figure 5 is the effect of reducing the length of the tow-rope from 
A = 1 to A = 0.2. We see that the first mode is stabilized quite effectively. 
[Values of u such that w = 0 are independent of fl, cl, A, x1 and xz. Changing A 
will change the numerical values of Im(w) in the case of the zeroth mode, but the 
basic behaviour of the mode will not change. In the case of A = 0.2 in figure 5, the 
locus of the zeroth mode cannot cross to the unstable region as it would have to 
pass through w = 0 ;  since there is no solution with w = 0 and u > 0 for A = 1, 
there cannot be one for A = 0.2.1 

The effect of the various system parameters on stability will be considered 
further in the next section. 

The results obtained here are inconsistent with those reported in appendix I1 
of Hawthorne’s (1961) paper, in which the behaviour of the system with in- 
creasing flow velocity (towing speed) was considered to be similar to that of the 
dynamically analogous system of a flexible tube conveying fluid (Benjamin 
1961); thus the system was considered to be stable up to a critical towing speed 
which was assumed to be associated with a buckling form of instability. This 
critical towing speed was calculated by obtaining solutions to the equation of 
motion satisfying w = 0,  without doing complex frequency calculations. One 
drawback of this type of analysis is the difficulty in interpreting the results; thus, 
having found such a point of neutral stability, it is not evident whether the 
system is stable or unstable above or below this point. 

Now from figures 3 to 6 we see that the only solutions with w = 0 are associated 
with the zeroth and first modes, and do not represent thresholds of instability, 
except for u = 0. After careful study of this matter the author has come to the 
conclusion that the critical velocities reported by Hawthorne do indeed corre- 
spond to points of neutral stability associated with the zeroth mode (cf. u z 3.5, 
figure 3)’ but they do not represent thresholds of instability. 

5. The conditions of stability 
The complex frequency calculations shown in figures 3-6 establish the exist- 

ence of several types of instability. In  this section the ranges of flow velocity over 
which the system is unstable are calculated as functions of the various system 
parameters, fl, f 2 ,  c,, c2, q,,, etc. The results are presented as maps of stability 
showing the effect of the most important system parameters. 

Figure 7 shows the effect on stability of the shape of the tail of a cylinder with 
ec2\, = ecT = 1, A = 1 and a perfectly streamlined nose (fl = 1, c1 = 0). The form 
drag coefficient at  the tail is arbitrariIy taken to have a numerical value 

c p  = 1 - f 2 ,  



Stability of towed Jlexible cylinders 283 

on the reasonable assumption that, as the tail becomes blunter, f2 is reduced and 
the form drag coefficient increases; however, c2 = (1 -f2)/2 or = (1 - f 2 ) 2 ,  etc. 
could equally well have been chosen. The upper region marked ‘first-mode 
oscillatory instability ’ corresponds to the second unstable loop of the first mode 
(cf. figure 3). We see that the range of u over which the system is stable is en- 
larged as the tail becomes blunter. For f 2  > 0.71 approximately, the system is 

61 I I I I I I \  I I I 1 
First-mode 

Second-mode \ 
oscillatory instability 

4 -  

Stable region 

3 -  

- 
1 Yawing and oscillatory 

oscillatory instability 
I 
I 

I I I 1 I I I I 

0 0.1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

c Blunt tail f2 Elongated streamlined tail + 

FIGURE 7. Stability map showing the effect of the tail shape for a system with ecN = e c ~  = 1, 
fi = 1, c1 = 0, A = 1, x1 = xa = 0.01 and c, = 1-f2. 

unstable over the whole range of flow velocities in at  Ieast one of its modes. In  
such cases, where the system is unstable in more than one of its modes, it is not 
possible, at least at  this stage, to determine the precise behaviour of the system. 

Figure 8 shows the effect of the tail shape on the same system but with the 
length of the tow-rope reduced by half (A = 0.5). In  this case, the threshold for 
third-mode oscillatory instability is also shown. Also shown is that in some 
cases, namely for f 2  < 0.5 approximately, the second mode regains stability at 
sufficiently high u. We see that the stable region is much larger in this case. For 
f2 < 0.15 approximately, first-mode oscillatory instability is not possible, and 
for f2 < 0-05, second-mode oscillatory instability does not occur either. This 
suggests a practical operational shape: a system with a stream-lined nose, a 
very blunt tail and A = 0-5 can be stable over a wide range of flow velocities, 
namely from u = 0 t o  ZL > 9. 

Figure 9 shows the effect of the tow-rope length on a system with 

€C‘V = €CT = 1, 

a perfectly streamlined nose and a medium-blunt tail (f2 = 1 - c2 = 0.6). We see, 
as would be expected from the previous two figures, that reducing the tow-rope 
length enlarges the stable region. For A = 0.15, for instance, there appears to be 
a region of yawing 0 < u < 2.65; at higher u, the system is stable up to u x 6.2 
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which is the threshold of third-mode oscillatory instability. For lower f z ,  the 
region of  yawing at  low u disappears entirely, as shown in figure 10 for 

f z  = cZ = 0.5. 

In t,his 0as0 the stable region, for A < 0.21, extends from u = 0 t o  u > 8.5. It is 
of particular interest that A has to be made quite small before it can have a 
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FIGURE 8. Stability map showing the effect of the tail shape for a system with ecN = ECT = 1, 

fi = 1, c1 = 0, A = 0-5, x1 = xz = 0.01 and c2 = l-fi. 

significant stabilizing effect on second- and third-mode oscillatory instabilities. 
For even blunter tail shapes, however, effective stability extends to larger values 
of A than shown in figures 9 and 10. The combination of a blunt tail and a rela- 
tively short tow-rope can be relied upon to stabilize the system to fairly large 
values of u. 

As was stated previously, the critical flow associated with the zeroth mode 
(w = 0), representing the cessation of yawing is independent of A,f1 and cl. For 
the particular combination of the other system parameters in figure 10 (and in 
figure 11)) yawing instability is not possible. 
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Figure 11 shows the effect of the shape of the nose for two systems with 
f2 = 0.5,  c2 = 0.5, A = 1 and f2 = 0, c2 = 1, A = 0.5, respectively, and 

ECN = €CT = 1 

in both cases. Here we arbitrarily set c1 = 1 - fl. We see that reducing fl has a 
marked destabilizing effect on the system. Accordingly, for optimum stability 

0 0.2 0.4 0.6 0.8 1 

fi 

FIGURE 11. Stability map showing the effect of the nose shape for two systems with 
EC-,,, = ECT = 1, x1 = x2 = 0.01, c1 = 1 -fi. (A), f z  = 0.5, ~2 = 0.5, A = 1; ( B ) ,  f z  = 0, 
cZ = 1, h = 0.5. 

the nose should be made as streamlined as possible. (It should be remarked here 
that increasing c1 actually has a stabilizing effect.) It is noteworthy, nevertheless, 
that, provided the tail is sufficiently blunt (case B), the system may be effectively 
stable even with a less than perfectly streamlined nose. 

Figure 12 shows the effect of ecN and ecT on stability. Here we take cN = cT.  
Increasing ecN and ecT signifies either a more slender cylinder (e = L/D)  or one 
with higher frictional coefficients. Since in practice the construction will be such 
that c, and cT be as small as possible, to avoid excessive towing drag, we shall 
regard figure 12 as representing the effect on stability of the slenderness of the 
cylinder. 

We see that manipulating e alone is not a very effective means of stabilizing 
the system. Only the zeroth mod0 is radically affected by varying E .  This can be 
important in some cases in conjunction with small A and f2; thus in figure 9, if 
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ecN = ecT = 1.5 instead of unity, the unstable region associated with the zeroth 
mode entirely disappears. 

The parameters x1 and xz in the above calculations were taken to be 

x1 = x2 = 0.01 

in all cases. Although it would have been more consistent to vary x1 and x2 with 
changing fl and f2, it is found that, provided they remain small, x1 and xz have 
very little effect on the dynamics of the system. 

6 

5 

4 

u 3  

2 

1 

0 

I I I 1 I I I I I 1 
Second-mode oscillatory instability 

Second mode 
/ / / , I , , ,  /,/ ,,,,,,,,, ,//,,//‘’’’’ 

Stable region 

First-mode oscillatory instability 
- 

1 I I I I I I I I I 
0.05 1 2 3 4 5 

ECN 

FIGURE 12. Stability map showing the effect of 8cN and ECT for a system with CT = cN 
f - 1, c1 = O,fa  = 0.6, c2 = 0.4, A = 1, 21 = X a  = 0.01. 1 -  

Because there are many system parameters, it is not practicable to produce 
universal stability curves, as could be done for cylinders with both ends sup- 
ported (Paidoussis 196Ga) for instance. Besides, the exhaustive study of the 
effect of the various system parameters is both not very illuminating and quite 
laborious; for instance, the calculations shown in any one of the figures 7 to 12 
require several hours of computer time. 

From figures 7 to 12 we may conclude that for maximum stability the system 
must have: (a) a streamlined nose, ( b )  a blunt tail, ( c )  a .%irly slender cylinder, and 
( d )  a short tow-rope. 

6. Experiments 
A number of experiments were conducted with flexible cylinders held in flow 

by a length of string attached to their upstream end. The aim of the experiments 
was to test the theory discussed in the previous sections. It is stressed at  the out- 
set that these were not meant to be exhaustive experiments. Their main purpose 
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was (a)  to discover whether the various types of instability predicted by theory 
do in fact occur, and ( b )  to provide some experimental data, particularly regard- 
ing the thresholds of the various instabilities, for quantitative comparison with 
theory. 

Apparatus 

The flexible cylinders were made by casting liquid silicon rubber (' Silastic ') into 
specially made moulds. The cylinders were made hollow, so that they would be 
of neutral buoyancy when submerged in water. In  fact, when submerged, the 
manufactured cylinders very slowly settled to the bottom; however, the measured 

u I. The flexible cylinder 

0 ;  

C ,+, D 

11. The end-pieces 

1 

FIGURE 13. The construction of the flexible cylinders used in the experiments and the 
shape of the end-pieces (for cylinder I) : 1, nylon thread (tow-rope) ; 2, perspes nose end- 
piece; 3, pcrspcx plug glued to produce water-tight seal; 4, perspex adaptor for receiving 
end-pieces; 5, silastic rubber cylinder; 6, 3 in. diameter hole for buoyancy; 7 ,  perspex 
spacers to  prevent rotation of adaptors; 8, glued threaded plug; 9, perspex tail end-piece. 

specific gravity was never greater than 1.01. At its two extremities the cylinder 
was fitted with threaded protrusions (see figure 13) over which could be screwed 
tapered perspex end-pieces. Several types of tapered ends were made in order 
to assess their effect on stability. 

Two cylinders were used: cylinder I was 13.9 in. long (without the ends), 0.68 in. 
diameter ( E l  = 12901b.in.3/sec2), and cylinder I1 was 9-sin. long (without the 
ends), 0.54 in. diameter (EI  = 4901b. i ~ ~ . ~ / s e c ~ ) .  

The experiments were conducted in a vertical, 3 in. diameter, glass test-section. 
The cylinder hung in the flow. This vertical arrangement was preferred to a 
horizontal one, as the cylinder started out being in the centre of the flow-tube 
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when the flow was turned on. (In a horizontal arrangement, the slightest de- 
parture from a specific gravity of unity-even arising from changes in water 
temperature-forced the cylinder to the top or the bottom of the flow tube.) 
Gravity and buoyancy were considered to have negligible net effect on lateral 
motions of the cylinder. Clearly a more spacious test-section would have been 
preferable; nevertheless, because the flow was fully developed turbulent pipe 
flow over most of the flow range of interest, it is considered that wall effects did 
not have much effect on the onset of instability. Of course this does not necessarily 
hold when large oscillations have developed; thus wall effects may have affected 
the transition from one form of instability to another, in cases where there was 
no intervening return to stability (cf. general observations). 

Straightening devices were placed ahead of the test-section in order to eliminate 
secondary-flow effects. Gauzes were placed downstream of the slender support 
which held the string, upstream of the cylinder, to eliminate non-uniformity in 
the flow introduced by the support. The length of the string could be varied. 

The flow velocity was measured with an orifice. The maximum flow attainable 
was about 13 ft./sec. During tests the flow velocity was increased in small steps, 
and time was allowed a t  each step to observe developments, if any. 

General observations 

In  the description of observed phenomena given below, we use observations and 
measurements obtained from experiments with cylinder I. In each case the 
behaviour of the system is given in detail for A = 4; subsequently, deviations 
from this behaviour for other values of A are noted. 

(i) Cylinder with elongated nose A and fail A (seeJigure 13). At very low flow 
velocities (u < 0.8) the system was stable and the cylinder remained in its central 
position of rest. At higher flow velocities ‘ criss-crossing ’ oscillation developed, 
i.e. oscillation during which the tail moved in the opposite direction to the nose, 
about the position of rest, such that the two limiting positions of the cylinder 
formed an X; the instantaneous inclination of the string relative to the position 
of rest was in the opposite direction to that of the cylinder. The frequency and 
amplitude of oscillation increased with flow; thus at  u = 0.8, w = 2.1; at u = 2, 
w = 3.2; at u = 2.9, w = 4.4. These were low-frequency oscillations corresponding 
to 0.3 to 1 c/s. The amplitude increased to the point where the cylinder almost 
touched the flow-tube. At the lower flows, motion of the cylinder involved no 
perceptible flexure; at  the higher flows there was appreciable flexure, with the 
tail ‘dragging ’ during oscillation. These oscillations were interpreted as corre- 
sponding to first-mode oscillatory instability. 

For u > 2.3 the cylinder assumed a bowed (‘banana’) shape in the course of 
oscillation. At u > 3 the amplitude of oscillation decreased, and a t  u = 3.6 the 
oscillation ceased while the cylinder retained a ‘banana ’ shape. This is interpreted 
as the point where first-mode oscillatory instability ceases, but the system is still 
unstable in its zeroth mode (cf. figure 8, e.g. for fi = 0-8), in a form of yawing 
involving flexing ( ‘ buckling ’) . 

This buckled shape was retained up to u = 4, where amplified second-mode 
19 Fluid Mech. 34 
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oscillations began. The motion developed in one plane, but after a few cycles of 
oscillation changed to a three-dimensional motion involving whirling of the cylin- 
der. In shape the oscillations looked like amplified free vibrations of a free-free 
beam in its first mode (cf. $4). The frequency of oscillation was about 2.4 CIS 
( W  = 17). 

The amplitude of oscillation increased with flow up to u NN 5, where the oscilla- 
tion became discontinuous. It appeared as if the cylinder was oscillating in its 
first-mode (criss-crossing) again, with a second-mode oscillation superposed; 
however, the amplitude of oscillation was quite large and the cylinder frequently 
hit the flow-tube. This probably corresponds to the second unstable loop of the 
first mode (cf. figure 8). This continued up to u = 7.2 where third-mode amplified 
oscillation developed. The frequency was about 7 CIS (w = 49). Whirling took 
place in this case also. 

The behaviour of the system for A = 1 and A = 4 was essentially as above. 
For A = 1, the amplitude of oscillation was generally much larger and hitting 
the flow-tube rendered observations less reliable. This was exaggerated for 
A = 3, and the observations were very difficult to interpret. 

For A = 4 the observations were considerably different. In  this case criss- 
crossing oscillation was not observed. Instead the cylinder took a skewed con- 
figuration at  u. > 1.2. This presumably corresponds to yawing at low u, where the 
fluid forces are too small to cause flexing of the cylinder. Increasing the flow 
gradually transformed the skewed cylinder to 8 banana-shaped one, as before. 
Evidently this corresponds to a case where, in the absence of first-mode oscilla- 
tory instability (cf. figure 9), yawing instability asserts itself even at low flow. 
Moreover, in this case second-mode oscillation, which started at  u = 5.1, was not 
disrupted, continuing in a regular manner up to u = 7.5, where third-mode 
oscillation started. Just before the establishment of the regular second-mode 
oscillation (w = 23) ,  an unusual, lower frequency oscillation (w = 7.7) developed 
a t  4.6 < u < 5.1. It was not unlike second-mode oscillation in shape and it was 
quite regular. This is further discussed in the next section. 

(ii) Cylinder with elongated nose A and medium-blunt tail C.  In  this case the 
cylinder was stable for u < 1.1. Between u = 1.1 and 1.6 some small amplitude 
criss-crossing was observed which was not as continuous as in the previous case. 
At higher flows, up to u = 5.5, the system was stable. No yawing instability 
developed, which agrees qualitatively with the theoretical results of figure 8 for 
fi < 0.5. 

At u = 5.5 second-mode amplified oscillation developed (w = 16). The motion 
in this case remained in one plane. At u > 5.9 some whirling occurred, however. 
This oscillation persisted with increasing flow up to u = 7-4, where discontinuous 
third-mode oscillation was observed. Evidently the flow was not quite high 
enough to produce fully developed third-mode amplified oscillation. 

The qualitative behaviour of the system for A = 1 was essentially as above. 
The flow-range over which criss-crossing occurred, however, was larger 

(1.1 < u < 2.5). 

For A = $ no criss-crossing at  all could be observed, and for A = + the system 
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was stable over the full flow range, from u = 0 to 7-4. These observations are in 
qualitative agreement with the theoretical results of figure 10. 

(iii) Cylinder with elongated nose A and very blunt tail D.  In  this case the tail 
end-piece was not tapered a t  all. The system was found to be stable over the full 
flow-range. This was the case for A = 4 and A = + as well. For A = 1, however, 
second-mode oscillation developed at  u = 6.3 and continued to maximum flow. 
No whirling took place. At  lower flows the system was stable. 

These observations are in qualitative agreement with the theoretical results 
for f2 = 0 in figures 7 and 8; the only discrepancy is that no first-mode oscillation 
was observed for A = 1. 

(iv) Cylinder with blunt nose and elongated tail. In  one experiment the medium- 
blunt end-piece C was used as the nose. The tail was the same elongated end- 
piece as in (i). The observations displayed no essential qualitative or quanti- 
tative difference from those of (i). This would appear to contradict the theoretical 
prediction shown in figure 11, which could be intepreted to signify that blunting 
the nose destabilizes the system. On reflexion, however, perhaps theory and 
experiment do not disagree after all. In  this connexion, two points must be made. 
First, theory actually predicts Bhat reducing fl destabilizes the system. Since 
reduction of fl or f2 from unity comes about mainly by flow-separation, we can 
see that, whereas an end-piece used as the tail may have a low value of fi, the 
same end-piece used as the nose does not necessarily have a low value of fl. 
Secondly, increasing the nose form-drag coefficient c1 actually stabilizes the 
system. (The results in figure 11 were obtained on the assumption that c1 and 
fl are related by c1 = 1 -fi.) 

(v) Cylinder with elongated nose and elongated, finned tail. The cylinder in this 
case was the same as in (i), except that the tail had a rectangular fin in one 
diametral plane. The fin was of the same width as the cylinder diameter and 
extended over the full length of the tail. The dynamic behaviour of the cylinder 
in this case was essentially as if the fin were not there, at  least up to the point of 
inception of second-mode oscillation. Oscillation tended to be in the plane of the 
fin. In  the case of second- and third-mode instabilities, oscillation would develop 
in the plane of the fin; then, a slight rotation of the plane of motion disrupted 
oscillation. Accordingly second- and third-mode oscillation was discontinuous. 

In  a subsequent experiment, a second fin was placed on the tail at  90" to the 
first. Once again this proved to be an unsatisfactory way of stabilizing the system. 
Essentially the only difference to the case without fins was that second-mode 
amplified oscillation occurred at  slightly higher flow velocities, i.e. at u = 4-5. 
The oscillation was continuous and no whirling took place. 

(vi) Cylinder with ring stabilizer. In  this case a rubber ring, 0.785 in. diameter, 
was fitted concentrically over the cylinder just ahead of the tail end-piece 
(cylinder diameter = 0.68in.). The nose and tail were as in (i). The effect on 
stability was notable. There was no criss-crossing oscillation, nor yawing, the 
system remaining stable up to u = 3.7. For u > 3-7 there were small amplitude, 
damped, second-mode oscillations which increased in amplitude and continuity 
with flow. At u > 4.4 the oscillations were essentially continuous, but the ampli- 
tude did not exceed i in .  It was dif3cult to decide whether the system was un- 

19-2 
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stable or not, because of the relatively small amplitude of motion. Similarly, 
with third-mode instability; third-mode, small amplitude, continuous oscilla- 
tions developed at  u = 6.4 and persisted to maximum flow. 

Thus, although the ring had a definite stabilizing effect', it was not nearly as 
effective as the very blunt end D, as described in (iii). 

Quantitative comparison with theory 
Direct quantitative comparison is not possible since this requires knowledge of 
the numerical values of the system parameters c,, cT, fi, f 2 ,  c1 and c2, which are 
unfortunately not known. Consequently, for purposes of comparison, experi- 
mental values of thresholds of instability, etc., were compared with more than 
one set of the corresponding calculated values. Thus, the experimental results for 
the cylinder with the elongated tail A were compared with calculated values for 
f2 = 1, c2 = 0 and fort2 = 0.7, c2 = 0-3. The choice of the latter set is not entirely 
arbitrary, drawing on previous experience from experiments with clamped-free 
cylinders (Paidoussis 19663). Similarly, the medium-blunt end C was compared 
with f2 = c2 = 0.5 and f2 = 0.3, c2 = 0.7. In  all cases presented below, c2 was 
taken to be numerically equal to 1 - f2, and fi = 1 - c1 = 1. Concerning c, and 
cT,  they were taken to be c, = cT - 0.05 (cf. Paidoussis 1966b), so that 

€CN = ECT = 1. 
In  the experimental calculations of u and w ,  the flow velocity U was calculated 

from the volumetric flow measurement assuming a uniform velocity distribution 
in the test section and taking account of the cross-sectional area occupied by the 
cylinder. The length L was taken to be the overall length of the cylinder, including 
the end-pieces. 

Some of the experimental results obtained are compared with theory in tables 
1 to 3. 

Table 1 shows the effect of shape of the tail on stability for A = 4 in the case of 
cylinder I. We see that comparing tail A with f 2  = 0-7, tail B with f2 = 0.5, tail C 
with either f2 = 0-5 or 0.3, and tail D with f2 = 0, the theoretical model predicts 
the behaviour of the system reasonably well. In  numerical terms, agreement is 
also reasonably good, except for the fact that the experimental thresholds for 
second- and third-mode instabilities are considerably higher than predicted by 
theory. The corresponding frequencies, surprisingly, are remarkably close. 

Table 2 compares with theory the experiments with cylinder I fitted with 
elongated nose and tail, for various tow-rope lengths. Here again the theoretical 
values for f2 = 0-7 predict all essential features of the experimental observa- 
tions. One remarkable occurrence is connected with the low-frequency oscillation 
observed between u = 4.6 and 5.1 for A = &; we see that this may well correspond 
to the first-mode unstable loop predicted by theory to occur between u = 5.4 and 
7.3. 

Table 3 similarly deals with cylinder I fitted with an elongated nose and a 
medium-blunt tail. We see that comparison with theory for f2 = 0.5, or better 
for f2 = 0-3, gives quite reasonable agreement with experiment. 

The experimental results obtained with cylinder I1 were essentially the same 
as those with cylinder I. 



D
es

cr
ip

ti
on

 
T

he
or

. 
E

x
p

. 
T

he
or

. 
E

x
p

. 
T

he
or

. 
E

x
p

. 
T

he
or

. 
E

x
p

. 
T

he
or

. 
fi

 =
 1

 
ta

il
 A

 
f
2
 =

 0
.7

 
ta

il
 B

 
f
2
 =

 0
.5

 
ta

il
 G

 
fi

 =
 0

.3
 

ta
il

 D
 

fi
 =

 0
 

-
 

-
 

C
ri

ss
-c

ro
ss

in
g 

os
ci

ll
at

io
n 

(f
ir

st
- 

U
 

0-
2.

8 
0'

8-
3.

6 
0-

2.
5 

0.
8-

1'
6 

0-
2.

1 
1.

1-
1.

6 
0-

1.
4 

m
od

e 
os

c.
 i

n
st

ab
il

it
y

) 
w

 
0-

4.
1 

2-
7 

0-
4.

8 
1.

9-
2.

3 
0-

4.
5 

- 3.2
 

0-
3.

2 
-
 

-
 

S
ta

ti
on

ar
y 

ya
w

in
g 

in
st

ab
il

it
y 

(z
er

ot
h 

m
od

e 
in

st
ab

il
it

y
 

w
it

ho
ut

 f
ir

st
- 

or
 

se
co

nd
- 

m
od

e 
os

ci
ll

at
io

n 

S
ta

bl
e 

re
gi

on
 

S
ec

on
d-

m
od

e 
os

ci
ll

at
io

n 
th

re
sh

ol
d 

(s
ec

on
d-

m
od

e 
os

c.
 i

n
st

ab
il

it
y

) 

S
ec

on
d-

m
od

e 
w

it
h 

su
pe

rp
os

ed
 

fi
rs

t-
m

od
e 

os
ci

ll
at

io
n 

(c
on

cu
rr

en
ce

 of
 f

ir
st

- 
an

d
 

se
co

nd
-m

od
e 

os
c.

 i
ns

ta
bi

li
ti

es
) 

T
hi

rd
-m

od
e 

os
ci

ll
at

io
n 

th
re

sh
ol

d 
(t

hi
rd

-m
od

e 
os

c.
 i

ns
ta

bi
li

ty
) 

U
 

-* 
3.

6-
4.

0 
2.

5-
3.

3 
-
 

U
 

-
 

-
 

-
 

1.
6-

4.
8 

2.
1-

3-
7 

1-
6-

5.
5 

14
-4

.2
 

0-
7.

41
- 

0-
9.

4 
<

 
-
 

F
 

U
 

2
.3

 
4

.0
 

3.
3 

4
-8

 
3.

7 
5

.5
 

4
.2

 
-
 

6 &
 

w
 

18
 

17
 

16
 

16
 

16
 

15
 

18
 

2
 

u
 

3.
6-

6.
8 

5-
7.

2 
5.

3-
6.

6 
-
 

-
 

-
 

-
 

-
 

-
 

is 
9

-4
 

%
 

-
 

-
 

H *.
 

0
 E 

U
 

4
.0

 
7.

2 
5.

8 
7

.1
 

6-
7 

7.
41

 
7.

6 
-7 

0
 

52
 

49
 

48
 

48
 

48
 

48
 

53
 

m
 s
 

cn
 

* S
ig

ni
fi

es
 th

at
 t

h
e 

ph
en

om
en

on
 d

es
cr

ib
ed

 d
oe

s 
n

o
t 

oc
cu

r.
 

7 M
ax

im
um

 f
lo

w
 a

va
il

ab
le

 c
or

re
sp

on
ds

 t
o

 u
 =

 7
.4

. 

1
 Th

ir
d-

m
od

e 
os

ci
ll

at
io

n 
n

o
t 

fu
ll

y 
de

ve
lo

pe
d.

 

T
A

B
L

E
 1.

 T
h

e 
ef

fe
ct

 o
f 

ta
il

 s
ha

pe
 o

n 
st

ab
il

it
y

 (
cy

li
nd

er
 I

; n
os

e 
A

;
 A

 =
 $

) 

t.3
 

W
 

W
 



D
es

cr
ip

 t,i
on

 

C
ri

ss
-c

ro
ss

in
g 

os
ci

ll
at

io
n 

(f
ir

st
-m

od
e o

sc
. 

in
st

ab
il

it
y)

 
S

ta
ti

o
n

ar
y

 y
aw

in
g 

(z
er

ot
h-

 
m

od
e 

in
st

ab
il

it
y 

al
on

e)
 

S
ec

on
d-

m
od

e 
os

ci
ll

at
io

n 
th

re
sh

ol
d 

(s
ec

on
d-

m
od

e o
sc

. 
in

st
ab

iI
it

y 
) 

S
ec

on
d-

m
od

e 
w

it
h 

su
pe

rp
os

ed
 

fi
rs

t-
m

od
e 

os
ci

ll
at

io
n 

(c
on

- 
cu

rr
en

ce
 o

f 
fi

rs
t-

 a
n

d
 s

ec
on

d-
 

m
od

e 
os

c.
 i

ns
ta

bi
li

ti
es

) 

th
re

sh
ol

d 
(t

hi
rd

-m
od

e 
os

c.
 

in
st

ab
il

it
y)

 

T
hi

rd
-m

od
e 

os
ci

ll
at

io
n 

U
 

w
 

U
 

U
 

w
 

U
 

U
 

w
 

A
=

 1
 
-
 

T
he

or
. 

T
he

or
. 

fz
 =

 1
 

E
x

p
. 

fi
 
=

 0
.7

 

0-
3.

0 
0

.G
3

.3
 

0-
3.

1 
0-

3.
0 

2-
4 

0-
4.

2 
-
 

3.
3-

3.
8 

3.
1-

3.
3 

2.
3 

3.
8 

3
.3

 
1
8
 

17
 

1
5
.5

 

3'
6-

7.
0 

4.
4-

6.
8 

4.
6-

6'
9 

4.
0 

7.
0 

5
.8

 
52

 
47

 

* 
S

ig
ni

fi
es

 th
at

 t
h

e 
ph

en
om

en
on

 d
es

cr
ib

ed
 d

oe
s 

n
o

t 
oc

cu
r.

 
$ 

F
ir

st
-m

od
e 

os
ci

ll
at

io
n 

al
on

e;
 w

 =
 7

.0
-8

.2
. 

A
=

&
 

-
7
 

T
he

or
. 

T
he

or
. 

fi
 =

 1
 

E
x

p
. 

fz
 =

 0
.7

 

0-
2.

8 
0.

8-
3.

6 
0-

2.
5 

0-
4.

1 
2-

7 
0-

4'
8 

-
 

3.
6-

4.
0 

2.
5-

3.
3 

2
-3

 
4.

0 
3.

3 
1

8
 

17
 

1
6

 

3.
6-

6.
8 

5.
0-

7.
2 

5.
3-

6.
6 

4.
0 

7
.2

 
5
.8

 
52

 
49

 
48

 

A
=

$
 
-
 

T
he

or
. 

T
he

or
. 

fz
 =

 1
 

E
xp

. 
fi

 =
 0

.7
 

0-
2.

3 
0'

8-
3.

6 
0-

1.
5 

0-
4.

9 
2-

5 
0-

4.
0 

2.
3-

2.
4 

3.
6-

4.
2 

1.
5-

3.
3 

2.
4 

4.
2 

3.
4 

1
8

 
1

8
 

1
8
 

3.
8-

6'
3 

5.
0-

7.
2 

5.
5-

6.
7 

4.
1 

7.
2 

5.
7 

52
 

49
-5

6 
50

 

.A
=

#
 

T
he

or
. 

T
he

or
. 

fi
 =

 1
 

E
x

p
. 

fz
 =

 0
.7

 

-
 

0-
0.

95
 

-* 
0-

3.
2 

-
 

-
 

0.
95

-3
.6

 
1.

2-
3.

7 
0-

3.
3 

2.
6 

5.
1 

-
 

5 
20

 
2

3
 

-
P

 

5
3

 
49

-5
6 

5
3

 

t 
R

eg
ul

ar
 l

ow
-f

re
qu

en
cy

 o
sc

il
la

ti
on

, i
n

 s
h

ap
e 

li
ke

 s
ec

on
d-

m
od

e,
 p

re
ce

di
ng

 
hi

gh
er

 f
re

qu
en

cy
 s

ec
on

d-
m

od
e 

os
ci

ll
at

io
n,

 w
 =

 7
.7

. 

T
A

B
L

E
 2.
 T

he
 e

ff
ec

t o
f 

to
w

-r
op

e 
le

ng
th

 o
n 

st
ab

il
it

y
 (

cy
li

nd
er

 I
; 

no
se

 A
;

 ta
il

 A
)

 



A
=

 1
 

A
=

+
 

A
=

&
 

A
=

+
 

-
 -------- 

> 
7- 

T
he

or
. 

T
he

or
. 

T
he

or
. 

T
he

or
. 

T
he

or
. 

T
he

or
. 

T
he

or
. 

T
he

or
. 

D
es

cr
ip

ti
on

 
fz
 
=

 0
.5

 
E

X
P

. 
fa
 
=

 0
.3

 
fa
 
=

 0
.5

 
E

x
p
. 

fa
 =

 0
.3

 
fa
 =

 0
.5

 
E

X
P

. 
f2

 
=

 0
.3

 
f2

 =
 0

.5
 

E
x
p
. 

fz
 =

 0
.3

 

I 
n

 

3 N
 

e
. 

G
 

C
ri

ss
-c

ro
ss

in
g 

os
ci

ll
at

io
n 

u
 

0-
2.

9 
1.

1-
2.

5 
0-

2.
5 

0-
2.

1 
1'

1-
1.

6 
0-

1.
4 

0-
0.

5 
-* 

-
 

-
 

-
 

-
 

S
ta

ti
on

ar
y 

ya
w

in
g 

in
st

ab
il

it
y 

u
 
-
 

-
 

-
 

-
 

(f
ir

st
-m

od
e 

os
c.

 i
n

st
ab

il
it

y
) 

w
 

0-
4.

6 
2-

3 
0

-4
3

 
0-

4.
5 

-3
.2

 
0-

3.
1 

0-
1.

5 
-
 

-
 

-
 

-
 

-
 

-
 

%
 

(z
er

ot
h-

m
od

e i
ns

ta
bi

li
ty

 a
lo

ne
) 

B
 

3
 

in
st

ab
il

it
y)

 
G

 

I
 

-
 

-
 

-
 

-
 

-
 

-
 

S
ta

bl
e 

re
gi

on
 

u
 

2.
9-

3.
8 

2.
5-

5.
2 

2.
5-

4.
4 

2-
1-

3.
7 

1.
8-

5.
5 

1
.P

4
.2

 
0.

5-
4.

0 
0-

5.
9 

0-
4.

5 
0

- 
>

8
 

0-
7.

4t
 

0
- 

>
8

 
& 

S
ec

on
d-

m
od

e 
os

ci
ll

at
io

n 
u
 

3.
8 

5
-2

 
4.

4 
3.

7 
5.

5 
4.

2 
4.

0 
5.

9 
4.

5 
H 

th
re

sh
ol

d 
(s

ec
on

d-
m

od
e 

os
c.

 
w

 
1

5
-2

 
13

 
15

.4
 

16
.6

 
15

 
17

.5
 

19
.5

 
17

 
21

.9
 

;a
" 

-
 

-
 

-
 

-
 

-
 

-
 

d
 

T
hi

rd
-m

od
e 

os
ci

ll
at

io
n 

u
 

6.
9 

7.
4$

 
8.

1 
6.

7 
7.

4%
 

7.
7 

6.
5 

-t 
7.

5 
-
 

-
 

-
 

-
 

-
 

-
 

-
 

53
 

th
re

sh
ol

d 
(t

hi
rd

-m
od

e 
os

c.
 

w
 

46
 

46
 

48
 

48
 

5
1

 
in

st
ab

il
it

y)
 

* 
S

ig
ni

fi
es

 th
at

 t
h

e 
ph

en
om

en
on

 d
es

cr
ib

ed
 d

oe
s 

n
o

t 
oc

cu
r.

 
$ 

T
hi

rd
-m

od
e 

os
ci

ll
at

io
n 

n
o

t 
fu

ll
y 

de
ve

lo
pe

d.
 

t 
M

ax
im

um
 f

lo
w

 a
va

il
ab

le
 c

or
re

sp
on

ds
 t

o
 u

 =
 7

.4
. 

$3
 

7 

T
A

B
L

E
 3.
 T

he
 e

ff
ec

t 
of

 t
ow

-r
op

e 
le

ng
th

 o
n 

st
ab

il
it

y
 (

cy
li

nd
er

 I
; 

no
se

 A
;

 ta
il

 C
) 



296 M .  P. Paidoussis 

7. Conclusion 
The experiments, conducted with apparatus of the simplest kind, demon- 

strated a number of phenomena, most of which have apparently not been ob- 
served hitherto. The experiments appeared to confirm the essential features of 
the dynamical problem as predicted by theory. In  a sense, the existence of 
flexural instabilities is the most important finding of this work. As we have seen, 
the cylinder may be stable as a rigid body, yet for sufficiently high towing speeds 
it may be unstable in one of its flexural modes. Apart from purely theoretical 
considerations, this is of practical importance also. 

Quantitative agreement between experiment and theory cannot be assessed 
definitively, until a means is found for determining the values of cx,  cT, cl, c2 and 
particularly fi and fi. Nevertheless, even on the basis of Present knowledge, it is 
possible to make intelligent estimates of these parameters, mainly based on 
experience from previous experiments (Paidoussis 1966 b) .  On that basis, 
quantitative agreement between experiment and theory is seen to be fair, as 
demonstrated in tables 1 to 3, although clearly it leaves a good deal to be desired. 

In  discussing agreement between experiment and theory, it is recalled that, in 
the theoretical model, motions are assumed to occur in one plane. The questioii 
arises of how applicable this is in a case, such as in the experiments, where the 
cylinder is equally free to move in any plane; would the additional freedom 
significantly affect the stability conditions? The answer is that it  would not, 
because motions in any two mutually perpendicular planes, according to 
linearized theory, are independent of each other; hence the most general motion 
of the system is equivalent to the superposition of two mutually independent 
motions, each subject to identical stability considerations. In practice it may be 
expected that unstable motion may start in a plane of greatest weakness. Once 
unstable motion develops, however, non-linear forces come into play and the 
motion may be expected to be three-dimensional in general, as it was indeed 
found to be in most experiments. 

The above of course do not apply in situations where the system jumps from 
instability A to instability B without an intervening return to stability; in such 
Cases it would be unreasonable to expect the experimental threshold for insta- 
bility B to agree closely with the theoretical one, since the latter is always 
evaluated on the assumption that prior to the inception of instability the system 
is stable and at  its position of rest. In  fact, there is no a priori reason to expect 
instabilities beyond the first one to materialize at all; according to linear theory, 
just beyond the threshold of the first instability the amplitude of motion should 
increase without limit. Evidently, in this case, the non-linear forces which come 
into play after the onset of instability have a limiting effect on amplitude. 

It should also be mentioned that the present theory does not take account of 
damping forces, other than those associated with the flow; this may partly 
explain why the thresholds of instability are virtually always higher than 
predicted. 

Of course, a great deal of work remains to be done, particularly on the experi- 
mental side. However, even with the present study, it is possible to make a 



Stability of towed Jlexible cylinders 297 

number of recommendations regarding optimum stability of the system. The 
two main ones are the following: the tail must be as blunt as possible, and the 
tow-rope as short as possible. The experiments do not show any advantage in 
making the nose particularly well streamlined, which does not entirely agree 
with theory. In  practice, of course, the desire to minimize drag would dictate 
a well streamlined nose in any case. It should also be borne in mind that in 
practice the tow-rope cannot be made very short, without running the risk of 
compound instabilities involving both the towing vessel and the towed cylinder, 
particularly when the former is small. 

In  terms of application of this work, it was shown that, provided that the tail 
is blunt, a system may be designed which would be stable to high towing speeds. 
Fins, according to this study, are not an effective stabilizer; however, fins of 
much greater surface area may be more successful. Ring stabilizers a t  the tail 
are more effective, but apparently not as good as a bIunt tail; in this case also, 
however, a ring stabilizer different than the one used might well be more effective. 

This work was conducted while the author was employed in the Reactor 
Research Division of Atomic Energy of Canada Ltd. at Chalk River, Ontario. 
The author is grateful to Mr R. I. Hodge and Atomic Energy of Canada for 
allowing him to conduct this investigation which has no direct nuclear applica- 
tion. The author is also grateful to Professor W. R. Hawthorne of Cambridge for 
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The successful performance of the experiments owes a great deal to the pro- 
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